Kodėl vis dar naudojame procesoriaus vietoj GPU?

Turinys:

Kodėl vis dar naudojame procesoriaus vietoj GPU?
Kodėl vis dar naudojame procesoriaus vietoj GPU?

Video: Kodėl vis dar naudojame procesoriaus vietoj GPU?

Video: Kodėl vis dar naudojame procesoriaus vietoj GPU?
Video: The NR.1 iPad Accessory for LumaFusion 2.2 in 2020! INSANE WORKFLOW - YouTube 2024, Kovas
Anonim
Vis daugiau GPU naudojamos ne grafiniams tikslams, pavyzdžiui, rizikos apskaičiavimams, skysčių dinamikos skaičiavimams ir seisminėms analizėms. Kas mums sustabdyti priimant GPU veikiančius įrenginius?
Vis daugiau GPU naudojamos ne grafiniams tikslams, pavyzdžiui, rizikos apskaičiavimams, skysčių dinamikos skaičiavimams ir seisminėms analizėms. Kas mums sustabdyti priimant GPU veikiančius įrenginius?

Šiandieninė klausimų ir atsakymų sesija ateina pas mus "SuperUser" - "Stack Exchange", "Q &A" interneto svetainių grupių bendruomenės, padalinys.

Klausimas

"SuperUser" skaitytuvas "Ell" palaiko technologines naujienas ir įdomu, kodėl mes nenaudojame daugiau GPU pagrįstų sistemų:

Man atrodo, kad šių dienų skaičiavimai atliekami GPU. Akivaizdu, kad grafika yra padaryta ten, tačiau naudojamas CUDA ir panašiai, AI, maišymo algoritmai (pagalvokite bitukinus) ir kiti taip pat atliekami GPU. Kodėl mes negalime atsikratyti procesoriaus ir naudoti savo GPU? Kas daro GPU daug greičiau negu CPU?

Kodėl iš tikrųjų? Kuo CPU unikalus?

Atsakymas

"SuperUser" partneris "DragonLord" siūlo gerai apgalvotą GPU ir procesorių skirtumų apžvalgą:

TL;DR answer: GPUs have far more processor cores than CPUs, but because each GPU core runs significantly slower than a CPU core and do not have the features needed for modern operating systems, they are not appropriate for performing most of the processing in everyday computing. They are most suited to compute-intensive operations such as video processing and physics simulations.

The detailed answer: GPGPU is still a relatively new concept. GPUs were initially used for rendering graphics only; as technology advanced, the large number of cores in GPUs relative to CPUs was exploited by developing computational capabilities for GPUs so that they can process many parallel streams of data simultaneously, no matter what that data may be. While GPUs can have hundreds or even thousands of stream processors, they each run slower than a CPU core and have fewer features (even if they areTuring complete and can be programmed to run any program a CPU can run). Features missing from GPUs include interrupts and virtual memory, which are required to implement a modern operating system.

In other words, CPUs and GPUs have significantly different architectures that make them better suited to different tasks. A GPU can handle large amounts of data in many streams, performing relatively simple operations on them, but is ill-suited to heavy or complex processing on a single or few streams of data. A CPU is much faster on a per-core basis (in terms of instructions per second) and can perform complex operations on a single or few streams of data more easily, but cannot efficiently handle many streams simultaneously.

As a result, GPUs are not suited to handle tasks that do not significantly benefit from or cannot be parallelized, including many common consumer applications such as word processors. Furthermore, GPUs use a fundamentally different architecture; one would have to program an application specifically for a GPU for it to work, and significantly different techniques are required to program GPUs. These different techniques include new programming languages, modifications to existing languages, and new programming paradigms that are better suited to expressing a computation as a parallel operation to be performed by many stream processors. For more information on the techniques needed to program GPUs, see the Wikipedia articles on stream processing and parallel computing.

Modern GPUs are capable of performing vector operations and floating-point arithmetic, with the latest cards capable of manipulating double-precision floating-point numbers. Frameworks such as CUDA and OpenCL enable programs to be written for GPUs, and the nature of GPUs make them most suited to highly parallelizable operations, such as in scientific computing, where a series of specialized GPU compute cards can be a viable replacement for a small compute cluster as in NVIDIA Tesla Personal Supercomputers. Consumers with modern GPUs who are experienced with Folding@home can use them to contribute with GPU clients, which can perform protein folding simulations at very high speeds and contribute more work to the project (be sure to read the FAQs first, especially those related to GPUs). GPUs can also enable better physics simulation in video games using PhysX, accelerate video encoding and decoding, and perform other compute-intensive tasks. It is these types of tasks that GPUs are most suited to performing.

AMD is pioneering a processor design called the Accelerated Processing Unit (APU) which combines conventional x86 CPU cores with GPUs. This could allow the CPU and GPU components to work together and improve performance on systems with limited space for separate components. As technology continues to advance, we will see an increasing degree of convergence of these once-separate parts. However, many tasks performed by PC operating systems and applications are still better suited to CPUs, and much work is needed to accelerate a program using a GPU. Since so much existing software use the x86 architecture, and because GPUs require different programming techniques and are missing several important features needed for operating systems, a general transition from CPU to GPU for everyday computing is extremely difficult.

Ar turite ką nors įtraukti į paaiškinimą? Garsas išjungtas komentaruose. Norite skaityti daugiau atsakymų iš kitų "Tech-savvy Stack Exchange" vartotojų? Patikrinkite visą diskusijų temą čia.

Rekomenduojamas: